Ecuación de Euler
Exploremos en una primera aproximación la ecuación de movimiento para un fluido simple. Consideremos toda la fuerza actuando sobre un volumen de control V 0 envuelto por una superficie S 0 \[\mathbf{F}_{total}=-\oint_{S_0} pd\mathbf{n}\] donde n es un vector unitario apuntando afuera de la superficie de control por lo que esta fuerza actúa sobre la superficie y p es una función tanto de la posición (x,y,z) y de un tiempo t. Transformamos ésta integral de superficie a una integral de volumen a partir de la conocida identidad vectorial \[\oint_{S_0}pd\mathbf{n}=\int_{V_0}dV\nabla P\] con esto y la densidad de fuerza por unidad de volumen en cada punto del espacio \[\mathbf{F}=\int_{V_0}dV \rho \frac{D\mathbf{v}}{Dt}\] debido a que el volumen de control es completamente arbitrario podemos aislar al integrando y obtenemos la ecuación de movimiento \[\rho\frac{D\mathbf{v}}{Dt}=-\nabla p\] o bien, de la definición de derivada material obtenemos \[\rho\frac{\partial \mathbf{v...